A singular initial value problem for the equation
Annales Polonici Mathematici (1998)
- Volume: 68, Issue: 2, page 177-189
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topWojciech Mydlarczyk. "A singular initial value problem for the equation $u^{(n)}(x) = g(u(x))$." Annales Polonici Mathematici 68.2 (1998): 177-189. <http://eudml.org/doc/270540>.
@article{WojciechMydlarczyk1998,
abstract = {We consider the problem of the existence of positive solutions u to the problem
$u^\{(n)\}(x) = g(u(x))$,
$u(0) = u^\{\prime \}(0) = ... = u^\{(n-1)\}(0) = 0$ (g ≥ 0,x > 0, n ≥ 2).
It is known that if g is nondecreasing then the Osgood condition
$∫₀^δ 1/s [s/g(s)]^\{1/n\} ds < ∞$
is necessary and sufficient for the existence of nontrivial solutions to the above problem. We give a similar condition for other classes of functions g.},
author = {Wojciech Mydlarczyk},
journal = {Annales Polonici Mathematici},
keywords = {singular initial value problems for ordinary differential equations; Volterra type integral equations; blowing up solutions; singular initial value problems; blowing-up solutions},
language = {eng},
number = {2},
pages = {177-189},
title = {A singular initial value problem for the equation $u^\{(n)\}(x) = g(u(x))$},
url = {http://eudml.org/doc/270540},
volume = {68},
year = {1998},
}
TY - JOUR
AU - Wojciech Mydlarczyk
TI - A singular initial value problem for the equation $u^{(n)}(x) = g(u(x))$
JO - Annales Polonici Mathematici
PY - 1998
VL - 68
IS - 2
SP - 177
EP - 189
AB - We consider the problem of the existence of positive solutions u to the problem
$u^{(n)}(x) = g(u(x))$,
$u(0) = u^{\prime }(0) = ... = u^{(n-1)}(0) = 0$ (g ≥ 0,x > 0, n ≥ 2).
It is known that if g is nondecreasing then the Osgood condition
$∫₀^δ 1/s [s/g(s)]^{1/n} ds < ∞$
is necessary and sufficient for the existence of nontrivial solutions to the above problem. We give a similar condition for other classes of functions g.
LA - eng
KW - singular initial value problems for ordinary differential equations; Volterra type integral equations; blowing up solutions; singular initial value problems; blowing-up solutions
UR - http://eudml.org/doc/270540
ER -
References
top- [1] P. J. Bushell and W. Okrasiński, Uniqueness of solutions for a class of nonlinear Volterra integral equations with convolution kernel, Math. Proc. Cambridge Philos. Soc. 106 (1989), 547-552. Zbl0689.45013
- [2] G. Gripenberg, Unique solutions of some Volterra integral equations, Math. Scand. 48 (1981), 59-67. Zbl0463.45002
- [3] R. K. Miller, Nonlinear Volterra Integral Equations, Benjamin, 1971. Zbl0448.45004
- [4] W. Mydlarczyk, The existence of nontrivial solutions of Volterra equations, Math. Scand. 68 (1991), 83-88. Zbl0701.45002
- [5] W. Mydlarczyk, An initial value problem for a third order differential equation, Ann. Polon. Math. 59 (1994), 215-223. Zbl0808.34004
- [6] W. Okrasiński, Nontrivial solutions to nonlinear Volterra integral equations, SIAM J. Math. Anal. 22 (1991), 1007-1015. Zbl0735.45005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.