The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
It is known that if G is a graph that can be drawn without edges crossing in a surface with Euler characteristic ε, and k and d are positive integers such that k ≥ 3 and d is sufficiently large in terms of k and ε, then G is (k,d)*-colorable; that is, the vertices of G can be colored with k colors so that each vertex has at most d neighbors with the same color as itself. In this paper, the known lower bound on d that suffices for this is reduced, and an analogous result is proved for list colorings...
It is proved that if G is multigraph with maximum degree 3, and every submultigraph of G has average degree at most 2(1/2) and is different from one forbidden configuration C⁺₄ with average degree exactly 2(1/2), then G is totally 4-choosable; that is, if every element (vertex or edge) of G is assigned a list of 4 colours, then every element can be coloured with a colour from its own list in such a way that no two adjacent or incident elements are coloured with the same colour. This shows that the...
In this note, precise upper bounds are determined for the minimum degree-sum of the vertices of a 4-cycle and a 5-cycle in a plane triangulation with minimum degree 5: w(C₄) ≤ 25 and w(C₅) ≤ 30. These hold because a normal plane map with minimum degree 5 must contain a 4-star with . These results answer a question posed by Kotzig in 1979 and recent questions of Jendrol’ and Madaras.
Download Results (CSV)