Let be a group. A subgroup of is called a TI-subgroup if or for every and is called a QTI-subgroup if for any . In this paper, a finite group in which every nonabelian maximal is a TI-subgroup (QTI-subgroup) is characterized.
A subgroup of a finite group is said to be conjugate-permutable if for all . More generaly, if we limit the element to a subgroup of , then we say that the subgroup is -conjugate-permutable. By means of the -conjugate-permutable subgroups, we investigate the relationship between the nilpotence of and the -conjugate-permutability of the Sylow subgroups of and under the condition that , where and are subgroups of . Some results known in the literature are improved and...
Let be a finite group. A normal subgroup of is a union of several -conjugacy classes, and it is called -decomposable in if it is a union of distinct -conjugacy classes. In this paper, we first classify finite non-perfect groups satisfying the condition that the numbers of conjugacy classes contained in its non-trivial normal subgroups are two consecutive positive integers, and we later prove that there is no non-perfect group such that the numbers of conjugacy classes contained in its...
Download Results (CSV)