Existence of homoclinic orbit for second-order nonlinear difference equation.
We prove a theorem on the growth of a solution of a kth-order linear differential equation. From this we obtain some uniqueness theorems. Our results improve several known results. Some examples show that the results are best possible.
We deal with a uniqueness theorem of two meromorphic functions that share three values with weights and also share a set consisting of two small meromorphic functions. Our results improve those by G. Brosch, I. Lahiri & P. Sahoo, T. C. Alzahary & H. X. Yi, P. Li & C. C. Yang, and others.
We prove some uniqueness theorems for meromorphic functions and their derivatives that share a meromorphic function whose order is less than those of the above meromorphic functions. The results in this paper improve those given by G. G. Gundersen & L. Z. Yang, J. P. Wang, J. M. Chang & Y. Z. Zhu, and others. Some examples are provided to show that our results are the best possible.
We prove some results on uniqueness of functions with three shared values. Our results improve those given by H. X. Yi, I. Lahiri, T. C. Alzahary & H. X. Yi, and other authors.
We prove a theorem on the growth of nonconstant solutions of a linear differential equation. From this we obtain some uniqueness theorems concerning that a nonconstant entire function and its linear differential polynomial share a small entire function. The results in this paper improve many known results. Some examples are provided to show that the results in this paper are the best possible.
The aim of this paper is to consider the following three problems:i (1) for a given uniformly q-separated sequence satisfying certain conditions, find a coefficient function A(z) analytic in the unit disc such that f”’ + A(z)f = 0 possesses a solution having zeros precisely at the points of this sequence; (2) find necessary and sufficient conditions for the differential equation (*) in the unit disc to be Blaschke-oscillatory; (3) find sufficient conditions on the analytic coefficients of the...
A graph in a certain graph class is called minimizing if the least eigenvalue of its adjacency matrix attains the minimum among all graphs in that class. Bell et al. have identified a subclass within the connected graphs of order n and size m in which minimizing graphs belong (the complements of such graphs are either disconnected or contain a clique of size n/2 ). In this paper we discuss the minimizing graphs of a special class of graphs of order n whose complements are connected and contains...
We deal with uniqueness of entire functions whose difference polynomials share a nonzero polynomial CM, which corresponds to Theorem 2 of I. Laine and C. C. Yang [Proc. Japan Acad. Ser. A 83 (2007), 148-151] and Theorem 1.2 of K. Liu and L. Z. Yang [Arch. Math. 92 (2009), 270-278]. We also deal with uniqueness of entire functions whose difference polynomials share a meromorphic function of a smaller order, improving Theorem 5 of J. L. Zhang [J. Math. Anal. Appl. 367 (2010), 401-408], where the entire...
Page 1