The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For a class of 2-D elastic energies we show that a radial equilibrium solution is the unique global minimizer in a subclass of all admissible maps. The boundary constraint is a double cover of ; the minimizer is and is such that vanishes at one point.
For external magnetic field
≤
, we prove
that a Meissner state solution for the Chern-Simons-Higgs functional exists. Furthermore, if the solution
is stable among all vortexless solutions, then it is unique.
For a class of 2-D elastic energies we show that a radial equilibrium solution
is the unique global minimizer in a subclass of all admissible maps. The
boundary constraint is a double cover of
; the minimizer is
and is such that vanishes at one point.
Download Results (CSV)