# Uniqueness of stable Meissner state solutions of the Chern-Simons-Higgs energy

ESAIM: Control, Optimisation and Calculus of Variations (2010)

- Volume: 16, Issue: 1, page 23-36
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topSpirn, Daniel, and Yan, Xiaodong. "Uniqueness of stable Meissner state solutions of the Chern-Simons-Higgs energy." ESAIM: Control, Optimisation and Calculus of Variations 16.1 (2010): 23-36. <http://eudml.org/doc/250745>.

@article{Spirn2010,

abstract = {
For external magnetic field hex ≤
Cε–α, we prove
that a Meissner state solution for the Chern-Simons-Higgs functional exists. Furthermore, if the solution
is stable among all vortexless solutions, then it is unique.},

author = {Spirn, Daniel, Yan, Xiaodong},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Chern-Simons-Higgs theory; superconductivity; uniqueness; Meissner solution},

language = {eng},

month = {1},

number = {1},

pages = {23-36},

publisher = {EDP Sciences},

title = {Uniqueness of stable Meissner state solutions of the Chern-Simons-Higgs energy},

url = {http://eudml.org/doc/250745},

volume = {16},

year = {2010},

}

TY - JOUR

AU - Spirn, Daniel

AU - Yan, Xiaodong

TI - Uniqueness of stable Meissner state solutions of the Chern-Simons-Higgs energy

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2010/1//

PB - EDP Sciences

VL - 16

IS - 1

SP - 23

EP - 36

AB -
For external magnetic field hex ≤
Cε–α, we prove
that a Meissner state solution for the Chern-Simons-Higgs functional exists. Furthermore, if the solution
is stable among all vortexless solutions, then it is unique.

LA - eng

KW - Chern-Simons-Higgs theory; superconductivity; uniqueness; Meissner solution

UR - http://eudml.org/doc/250745

ER -

## References

top- L. Almeida and F. Bethuel, Topological methods for the Ginzburg-Landau equations. J. Math. Pures. Appl.77 (1998) 1–49.
- F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional. Cal. Var. Partial Differ. Equ.1 (1993) 123–148.
- A. Bonnet, S.J. Chapman and R. Monneau, Convergence of Meissner minimizers of the Ginzburg-Landau energy of superconductivity as κ → +∞. SIAM J. Math. Anal.31 (2000) 1374–1395.
- K. Choe and H.-S. Nam, Existence and uniqueness of topological multivortex solutions of the self-dual Chern-Simons CP(1) model. Nonlinear Anal.66 (2007) 2794–2813.
- M. Kurzke and D. Spirn, Gamma limit of the nonself-dual Chern-Simons-Higgs energy. J. Funct. Anal.244 (2008) 535–588.
- M. Kurzke and D. Spirn, Scaling limits of the Chern-Simons-Higgs energy. Commun. Contemp. Math.10 (2008) 1–16.
- F. Pacard and T. Rivière, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications39. Birkhäuser Boston, Inc., Boston, MA, USA (2000).
- E. Sandier and S. Serfaty, Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field. Ann. Inst. H. Poincaré, Anal. Non Linéaire17 (2000) 119–145.
- S. Serfaty, Stable configurations in superconductivity: Uniqueness, mulitplicity, and vortex-nucleation. Arch. Rational Mech. Anal.149 (1999) 329–365.
- D. Spirn and X. Yan, Minimizers near the first critical field for the nonself-dual Chern-Simons-Higgs energy. Calc. Var. Partial Differ. Equ. (to appear).
- G. Tarantello, Uniqueness of selfdual periodic Chern-Simons vortices of topological-type. Calc. Var. Partial Differ. Equ.29 (2007) 191–217.
- D. Ye and F. Zhou, Uniqueness of solutions of the Ginzburg-Landau problem. Nonlinear Anal.26 (1996) 603–612.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.