Uniqueness of stable Meissner state solutions of the Chern-Simons-Higgs energy

Daniel Spirn; Xiaodong Yan

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 16, Issue: 1, page 23-36
  • ISSN: 1292-8119

Abstract

top
For external magnetic field hex ≤ Cε–α, we prove that a Meissner state solution for the Chern-Simons-Higgs functional exists. Furthermore, if the solution is stable among all vortexless solutions, then it is unique.

How to cite

top

Spirn, Daniel, and Yan, Xiaodong. "Uniqueness of stable Meissner state solutions of the Chern-Simons-Higgs energy." ESAIM: Control, Optimisation and Calculus of Variations 16.1 (2010): 23-36. <http://eudml.org/doc/250745>.

@article{Spirn2010,
abstract = { For external magnetic field hex ≤ Cε–α, we prove that a Meissner state solution for the Chern-Simons-Higgs functional exists. Furthermore, if the solution is stable among all vortexless solutions, then it is unique.},
author = {Spirn, Daniel, Yan, Xiaodong},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Chern-Simons-Higgs theory; superconductivity; uniqueness; Meissner solution},
language = {eng},
month = {1},
number = {1},
pages = {23-36},
publisher = {EDP Sciences},
title = {Uniqueness of stable Meissner state solutions of the Chern-Simons-Higgs energy},
url = {http://eudml.org/doc/250745},
volume = {16},
year = {2010},
}

TY - JOUR
AU - Spirn, Daniel
AU - Yan, Xiaodong
TI - Uniqueness of stable Meissner state solutions of the Chern-Simons-Higgs energy
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/1//
PB - EDP Sciences
VL - 16
IS - 1
SP - 23
EP - 36
AB - For external magnetic field hex ≤ Cε–α, we prove that a Meissner state solution for the Chern-Simons-Higgs functional exists. Furthermore, if the solution is stable among all vortexless solutions, then it is unique.
LA - eng
KW - Chern-Simons-Higgs theory; superconductivity; uniqueness; Meissner solution
UR - http://eudml.org/doc/250745
ER -

References

top
  1. L. Almeida and F. Bethuel, Topological methods for the Ginzburg-Landau equations. J. Math. Pures. Appl.77 (1998) 1–49.  
  2. F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional. Cal. Var. Partial Differ. Equ.1 (1993) 123–148.  
  3. A. Bonnet, S.J. Chapman and R. Monneau, Convergence of Meissner minimizers of the Ginzburg-Landau energy of superconductivity as κ → +∞. SIAM J. Math. Anal.31 (2000) 1374–1395.  
  4. K. Choe and H.-S. Nam, Existence and uniqueness of topological multivortex solutions of the self-dual Chern-Simons CP(1) model. Nonlinear Anal.66 (2007) 2794–2813.  
  5. M. Kurzke and D. Spirn, Gamma limit of the nonself-dual Chern-Simons-Higgs energy. J. Funct. Anal.244 (2008) 535–588.  
  6. M. Kurzke and D. Spirn, Scaling limits of the Chern-Simons-Higgs energy. Commun. Contemp. Math.10 (2008) 1–16.  
  7. F. Pacard and T. Rivière, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications39. Birkhäuser Boston, Inc., Boston, MA, USA (2000).  
  8. E. Sandier and S. Serfaty, Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field. Ann. Inst. H. Poincaré, Anal. Non Linéaire17 (2000) 119–145.  
  9. S. Serfaty, Stable configurations in superconductivity: Uniqueness, mulitplicity, and vortex-nucleation. Arch. Rational Mech. Anal.149 (1999) 329–365.  
  10. D. Spirn and X. Yan, Minimizers near the first critical field for the nonself-dual Chern-Simons-Higgs energy. Calc. Var. Partial Differ. Equ. (to appear).  
  11. G. Tarantello, Uniqueness of selfdual periodic Chern-Simons vortices of topological-type. Calc. Var. Partial Differ. Equ.29 (2007) 191–217.  
  12. D. Ye and F. Zhou, Uniqueness of solutions of the Ginzburg-Landau problem. Nonlinear Anal.26 (1996) 603–612.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.