The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Subriemannian geodesics of Carnot groups of step 3

Kanghai TanXiaoping Yang — 2013

ESAIM: Control, Optimisation and Calculus of Variations

In Carnot groups of step  ≤ 3, all subriemannian geodesics are proved to be normal. The proof is based on a reduction argument and the Goh condition for minimality of singular curves. The Goh condition is deduced from a reformulation and a calculus of the end-point mapping which boils down to the graded structures of Carnot groups.

Two dimensional optimal transportation problem for a distance cost with a convex constraint

Ping ChenFeida JiangXiaoping Yang — 2013

ESAIM: Control, Optimisation and Calculus of Variations

We first prove existence and uniqueness of optimal transportation maps for the Monge’s problem associated to a cost function with a strictly convex constraint in the Euclidean plane ℝ. The cost function coincides with the Euclidean distance if the displacement  −  belongs to a given strictly convex set, and it is infinite otherwise. Secondly, we give a sufficient condition for existence and uniqueness of optimal transportation maps for the original Monge’s problem in ℝ. Finally, we get existence...

Page 1

Download Results (CSV)