Weak solutions of a parabolic-elliptic type system for image inpainting
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 16, Issue: 4, page 1040-1052
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topJin, Zhengmeng, and Yang, Xiaoping. "Weak solutions of a parabolic-elliptic type system for image inpainting." ESAIM: Control, Optimisation and Calculus of Variations 16.4 (2010): 1040-1052. <http://eudml.org/doc/250734>.
@article{Jin2010,
abstract = {
In this paper we consider the initial
boundary value problem of a parabolic-elliptic system for image
inpainting, and establish the existence and uniqueness of weak
solutions to the system in dimension two.
},
author = {Jin, Zhengmeng, Yang, Xiaoping},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Weak solutions; parabolic-elliptic system; image
inpainting; weak solutions; image inpainting; initial boundary value problem; existence and uniqueness},
language = {eng},
month = {10},
number = {4},
pages = {1040-1052},
publisher = {EDP Sciences},
title = {Weak solutions of a parabolic-elliptic type system for image inpainting},
url = {http://eudml.org/doc/250734},
volume = {16},
year = {2010},
}
TY - JOUR
AU - Jin, Zhengmeng
AU - Yang, Xiaoping
TI - Weak solutions of a parabolic-elliptic type system for image inpainting
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/10//
PB - EDP Sciences
VL - 16
IS - 4
SP - 1040
EP - 1052
AB -
In this paper we consider the initial
boundary value problem of a parabolic-elliptic system for image
inpainting, and establish the existence and uniqueness of weak
solutions to the system in dimension two.
LA - eng
KW - Weak solutions; parabolic-elliptic system; image
inpainting; weak solutions; image inpainting; initial boundary value problem; existence and uniqueness
UR - http://eudml.org/doc/250734
ER -
References
top- C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro and J. Verdera, Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Process.10 (2001) 1200–1211.
- M. Bertalmio, G. Sapiro, V. Caselles and C. Ballsester, Image Inpainting. Computer Graphics, SIGGRAPH (2000) 417–424.
- M. Bertalmio, A. Bertozzi and G. Sapiro, Navier-Stokes, fluid-dynamics and image and video inpainting, in Proc. Conf. Comp. Vision Pattern Rec. (2001) 355–362.
- F. Catte, P.L. Lions, J.M. Morel and T. Coll, Image selective smoothing and edge detection by nonlinear diffusion. SIAM. J. Num. Anal.29 (1992) 182–193.
- T. Chan and J. Shen, Variational restoration of nonflat image feature: Models and algorithms. SIAM J. Appl. Math.61 (2000) 1338–1361.
- T. Chan and J. Shen, Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math.63 (2002) 1019–1043.
- T. Chan, S. Kang and J. Shen, Euler's elastica and curvature based inpaintings. SIAM J. Appl. Math.63 (2002) 564–592.
- T. Chan, J. Shen and L. Vese, Variational PDE models in image processing. Notices Am. Math. Soc.50 (2003) 14–26.
- L.C. Evans, Partial differental equations. American Mathematical Society (1998).
- Z.M. Jin and X.P. Yang, Viscosity analysis on the BSCB models for image inpainting. Chinese Annals of Math. (Ser. A) (to appear).
- J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaries. Dunod (1969).
- S. Masnou, Disocclusion: a variational approach using level lines. IEEE Trans. Image Process.11 (2002) 68–76.
- P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intell.12 (1990) 629–639.
- X.C. Tai, S. Osher and R. Holm, Image inpainting using a TV-Stokes equation, in Image Processing based on partial differential equations, X.C. Tai, K.-A. Lie, T.F. Chan and S. Osher Eds., Springer, Heidelberg (2007) 3–22.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.