The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be an odd prime and a fixed integer with . For each integer with , it is clear that there exists one and only one with such that (mod ). Let denote the number of all solutions of the congruence equation (mod ) for , in which and are of opposite parity, where is defined by the congruence equation . The main purpose of this paper is to use the properties of Dedekind sums and the mean value theorem for Dirichlet -functions to study the hybrid mean value problem involving...
Download Results (CSV)