On Lehmer's problem and Dedekind sums
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 4, page 909-916
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPan, Xiaowei, and Zhang, Wenpeng. "On Lehmer's problem and Dedekind sums." Czechoslovak Mathematical Journal 61.4 (2011): 909-916. <http://eudml.org/doc/196387>.
@article{Pan2011,
abstract = {Let $p$ be an odd prime and $c$ a fixed integer with $(c, p)=1$. For each integer $a$ with $1\le a \le p-1$, it is clear that there exists one and only one $b$ with $0\le b \le p-1$ such that $ab \equiv c $ (mod $p$). Let $N(c, p)$ denote the number of all solutions of the congruence equation $ab \equiv c$ (mod $p$) for $1 \le a$, $b \le p-1$ in which $a$ and $\overline\{b\}$ are of opposite parity, where $\overline\{b\}$ is defined by the congruence equation $b\overline\{b\}\equiv 1\hspace\{4.44443pt\}(\@mod \; p)$. The main purpose of this paper is to use the properties of Dedekind sums and the mean value theorem for Dirichlet $L$-functions to study the hybrid mean value problem involving $N(c,p)-\frac\{1\}\{2\}\phi (p)$ and the Dedekind sums $S(c,p)$, and to establish a sharp asymptotic formula for it.},
author = {Pan, Xiaowei, Zhang, Wenpeng},
journal = {Czechoslovak Mathematical Journal},
keywords = {Lehmer's problem; error term; Dedekind sums; hybrid mean value; asymptotic formula; Lehmer's problem; error term; Dedekind sum; hybrid mean value; asymptotic formula},
language = {eng},
number = {4},
pages = {909-916},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Lehmer's problem and Dedekind sums},
url = {http://eudml.org/doc/196387},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Pan, Xiaowei
AU - Zhang, Wenpeng
TI - On Lehmer's problem and Dedekind sums
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 909
EP - 916
AB - Let $p$ be an odd prime and $c$ a fixed integer with $(c, p)=1$. For each integer $a$ with $1\le a \le p-1$, it is clear that there exists one and only one $b$ with $0\le b \le p-1$ such that $ab \equiv c $ (mod $p$). Let $N(c, p)$ denote the number of all solutions of the congruence equation $ab \equiv c$ (mod $p$) for $1 \le a$, $b \le p-1$ in which $a$ and $\overline{b}$ are of opposite parity, where $\overline{b}$ is defined by the congruence equation $b\overline{b}\equiv 1\hspace{4.44443pt}(\@mod \; p)$. The main purpose of this paper is to use the properties of Dedekind sums and the mean value theorem for Dirichlet $L$-functions to study the hybrid mean value problem involving $N(c,p)-\frac{1}{2}\phi (p)$ and the Dedekind sums $S(c,p)$, and to establish a sharp asymptotic formula for it.
LA - eng
KW - Lehmer's problem; error term; Dedekind sums; hybrid mean value; asymptotic formula; Lehmer's problem; error term; Dedekind sum; hybrid mean value; asymptotic formula
UR - http://eudml.org/doc/196387
ER -
References
top- Apostol, T. M., Introduction to Analytic Number Theory, Upgraduate Texts in Mathematics, Springer-Verlag, New York (1976). (1976) Zbl0335.10001MR0434929
- Carlitz, L., 10.2140/pjm.1953.3.523, Pac. J. Math. 3 (1953), 523-527. (1953) Zbl0057.03703MR0056020DOI10.2140/pjm.1953.3.523
- Conrey, J. B., Fransen, E., Klein, R., Scott, C., 10.1006/jnth.1996.0014, J. Number Theory 56 (1996), 214-226. (1996) Zbl0851.11028MR1373548DOI10.1006/jnth.1996.0014
- Guy, R. K., Unsolved Problems in Number Theory (Second Edition), Unsolved Problems in Intuitive Mathematics 1, Springer-Verlag, New York (1994). (1994) MR1299330
- Jia, C. H., 10.1006/jnth.2000.2580, J. Number Theory 87 (2001), 173-188. (2001) Zbl0976.11044MR1824141DOI10.1006/jnth.2000.2580
- Xu, Z. F., Zhang, W. P., Dirichlet Characters and Their Applications, Chinese Science Press, Beijing (2008). (2008)
- Xu, Z. F., Zhang, W. P., 10.1016/j.jmaa.2005.07.054, J. Math. Anal. Appl. 320 (2006), 756-770. (2006) Zbl1098.11050MR2225991DOI10.1016/j.jmaa.2005.07.054
- Zhang, W. P., 10.1023/A:1006724724840, Acta Math. Hung. 86 (2000), 275-289. (2000) Zbl0963.11049MR1756252DOI10.1023/A:1006724724840
- Zhang, W. P., A problem of D. H. Lehmer and its mean square value formula, Jap. J. Math. 29 (2003), 109-116. (2003) Zbl1127.11338MR1986866
- Zhang, W. P., On a problem of D. H. Lehmer and its generalization, Compos. Math. 86 (1993), 307-316. (1993) Zbl0783.11003MR1219630
- Zhang, W. P., 10.5802/jtnb.179, J. Théor. Nombres Bordx. 8 (1996), 429-442. (1996) Zbl0871.11033MR1438480DOI10.5802/jtnb.179
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.