On the exponential diophantine equation
For any positive integer which is not a square, let be the least positive integer solution of the Pell equation and let denote the class number of binary quadratic primitive forms of discriminant . If satisfies and , then is called a singular number. In this paper, we prove that if is a positive integer solution of the equation with , then maximum and both , are singular numbers. Thus, one can possibly prove that the equation has no positive integer solutions .