The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The purpose of this paper is to study the periodic boundary value problem -u''(t) = f(t,u(t),u'(t)), u(0) = u(2π), u'(0) = u'(2π) when f satisfies the Carathéodory conditions. We show that a generalized upper and lower solution method is still valid, and develop a monotone iterative technique for finding minimal and maximal solutions.
We study certain subgroups of the Hopf group-coalgebra automorphism group of Radford’s -biproduct. Firstly, we discuss the endomorphism monoid and the automorphism group of Radford’s -biproduct , and prove that the automorphism has a factorization closely related to the factors and . What’s more interesting is that a pair of maps can be used to describe a family of mappings . Secondly, we consider the relationship between the automorphism group and the automorphism group of , and...
Download Results (CSV)