Uniqueness of transcendental meromorphic functions with their nonlinear differential polynomials sharing the small function.
Some new and recent results on the fixed point theory of multivalued contractions and nonexpansive mappings are presented. Discussions concerning Reich's problem are included. Existence of fixed points for weakly inward contractions is proved. Local contractions are also discussed. The Kirk-Massa theorem is extended to inward multivalued nonexpansive mappings. Using an inequality characteristic of uniform convexity, another proof of Lim's theorem on weakly inward multivalued nonexpansive mappings...
The main purpose of this paper is to investigate the uniqueness of meromorphic functions that share two finite sets in the k-punctured complex plane. It is proved that there exist two sets S1, S2 with ♯S1 = 2 and ♯S2 = 5, such that any two admissible meromorphic functions f and g in Ω must be identical if EΩ(Sj, f) = EΩ(Sj, g)(j = 1,2).
In this paper, we study the relation between the deficiencies concerning a meromorphic function f(z), its derivative f′(z) and differential-difference monomials f(z)mf(z+c)f′(z), f(z+c)nf′(z), f(z)mf(z+c). The main results of this paper are listed as follows: Let f(z) be a meromorphic function of finite order satisfying lim sup r→+∞ T(r, f) T(r, f ′ ) <+∞, and c be a non-zero complex constant, then δ(∞, f(z)m f(z+c)f′(z))≥δ(∞, f′) and δ(∞,f(z+c)nf′(z))≥ δ(∞, f′). We also investigate the value...
We deal with the uniqueness problem for analytic functions sharing four distinct values in an angular domain and obtain some theorems which improve the result given by Cao and Yi [J. Math. Anal. Appl. 358 (2009)].
We deal with the uniqueness of analytic functions in the unit disc sharing four distinct values and obtain two theorems improving a previous result given by Mao and Liu (2009).
We investigate the exponent of convergence of the zero-sequence of solutions of the differential equation , (1) where , P₁(z),P₂(z),P₃(z) are polynomials of degree n ≥ 1, Q₁(z),Q₂(z),Q₃(z), (j=1,..., k-1) are entire functions of order less than n, and k ≥ 2.
This paper is concerned with weak uniform normal structure and iterative fixed points of nonexpansive mappings. Precisely, in Section 1, we show that the geometrical coefficient β(X) for a Banach space X recently introduced by Jimenez-Melado [8] is exactly the weakly convergent sequence coefficient WCS(X) introduced by Bynum [1] in 1980. We then show in Section 2 that all kinds of James' quasi-reflexive spaces have weak uniform normal structure. Finally, in Section 3, we show that in a space X with...
Page 1 Next