Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Hyperconvexity of non-smooth pseudoconvex domains

Xu Wang — 2014

Annales Polonici Mathematici

We show that a bounded pseudoconvex domain D ⊂ ℂⁿ is hyperconvex if its boundary ∂D can be written locally as a complex continuous family of log-Lipschitz curves. We also prove that the graph of a holomorphic motion of a bounded regular domain Ω ⊂ ℂ is hyperconvex provided every component of ∂Ω contains at least two points. Furthermore, we show that hyperconvexity is a Hölder-homeomorphic invariant for planar domains.

The mean curvature measure

Quiyi DaiNeil S. TrudingerXu-Jia Wang — 2012

Journal of the European Mathematical Society

We assign a measure to an upper semicontinuous function which is subharmonic with respect to the mean curvature operator, so that it agrees with the mean curvature of its graph when the function is smooth. We prove that the measure is weakly continuous with respect to almost everywhere convergence. We also establish a sharp Harnack inequality for the minimal surface equation, which is crucial for our proof of the weak continuity. As an application we prove the existence of weak solutions to the...

Page 1

Download Results (CSV)