On a number theoretic conjecture on positive integral points in a 5-dimensional tetrahedron and a sharp estimate of the Dickman–De Bruijn function
It is well known that getting the estimate of integral points in right-angled simplices is equivalent to getting the estimate of Dickman-De Bruijn function which is the number of positive integers and free of prime factors . Motivating from the Yau Geometry Conjecture, the third author formulated the Number Theoretic Conjecture which gives a sharp polynomial upper estimate that counts the number of positive integral points in n-dimensional () real right-angled simplices. In this paper, we...