On some inequalities of local times of iterated stochastic integrals.
Let X = (Xₜ,ℱₜ) be a continuous BMO-martingale, that is, , where the supremum is taken over all stopping times T. Define the critical exponent b(X) by , where the supremum is taken over all stopping times T. Consider the continuous martingale q(X) defined by . We use q(X) to characterize the distance between ⟨X⟩ and the class of all bounded martingales in the space of continuous BMO-martingales, and we show that the inequalities hold for every continuous BMO-martingale X.
Let , be two independent, -dimensional bifractional Brownian motions with respective indices and . Assume . One of the main motivations of this paper is to investigate smoothness of the collision local time where denotes the Dirac delta function. By an elementary method we show that is smooth in the sense of Meyer-Watanabe if and only if .
Page 1