The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On the distance between ⟨X⟩ and L in the space of continuous BMO-martingales

Litan YanNorihiko Kazamaki — 2005

Studia Mathematica

Let X = (Xₜ,ℱₜ) be a continuous BMO-martingale, that is, | | X | | B M O s u p T | | E [ | X - X T | | T ] | | < , where the supremum is taken over all stopping times T. Define the critical exponent b(X) by b ( X ) = b > 0 : s u p T | | E [ e x p ( b ² ( X - X T ) ) | T ] | | < , where the supremum is taken over all stopping times T. Consider the continuous martingale q(X) defined by q ( X ) = E [ X | ] - E [ X | ] . We use q(X) to characterize the distance between ⟨X⟩ and the class L of all bounded martingales in the space of continuous BMO-martingales, and we show that the inequalities 1 / 4 d ( q ( X ) , L ) b ( X ) 4 / d ( q ( X ) , L ) hold for every continuous BMO-martingale X.

Smoothness for the collision local time of two multidimensional bifractional Brownian motions

Guangjun ShenLitan YanChao Chen — 2012

Czechoslovak Mathematical Journal

Let B H i , K i = { B t H i , K i , t 0 } , i = 1 , 2 be two independent, d -dimensional bifractional Brownian motions with respective indices H i ( 0 , 1 ) and K i ( 0 , 1 ] . Assume d 2 . One of the main motivations of this paper is to investigate smoothness of the collision local time T = 0 T δ ( B s H 1 , K 1 - B s H 2 , K 2 ) d s , T > 0 , where δ denotes the Dirac delta function. By an elementary method we show that T is smooth in the sense of Meyer-Watanabe if and only if min { H 1 K 1 , H 2 K 2 } < 1 / ( d + 2 ) .

Page 1

Download Results (CSV)