Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

The bicrossed products of H 4 and H 8

Daowei LuYan NingDingguo Wang — 2020

Czechoslovak Mathematical Journal

Let H 4 and H 8 be the Sweedler’s and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through H 8 and H 4 (equivalently, any bicrossed product between the Hopf algebras H 8 and H 4 ) must be isomorphic to one of the following four Hopf algebras: H 8 H 4 , H 32 , 1 , H 32 , 2 , H 32 , 3 . The set of all matched pairs ( H 8 , H 4 , , ) is explicitly described, and then the associated bicrossed product is given by generators and relations.

Page 1

Download Results (CSV)