The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

f -biminimal maps between Riemannian manifolds

Yan ZhaoXimin Liu — 2019

Czechoslovak Mathematical Journal

We give the definition of f -biminimal submanifolds and derive the equation for f -biminimal submanifolds. As an application, we give some examples of f -biminimal manifolds. Finally, we consider f -minimal hypersurfaces in the product space n × 𝕊 1 ( a ) and derive two rigidity theorems.

Proper connection number of bipartite graphs

Jun YueMeiqin WeiYan Zhao — 2018

Czechoslovak Mathematical Journal

An edge-colored graph G is proper connected if every pair of vertices is connected by a proper path. The proper connection number of a connected graph G , denoted by pc ( G ) , is the smallest number of colors that are needed to color the edges of G in order to make it proper connected. In this paper, we obtain the sharp upper bound for pc ( G ) of a general bipartite graph G and a series of extremal graphs. Additionally, we give a proper 2 -coloring for a connected bipartite graph G having δ ( G ) 2 and a dominating cycle...

Graphs with 3-Rainbow Index n − 1 and n − 2

Xueliang LiIngo SchiermeyerKang YangYan Zhao — 2015

Discussiones Mathematicae Graph Theory

Let G = (V (G),E(G)) be a nontrivial connected graph of order n with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ N, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex set S ⊆ V (G), a tree connecting S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for each k-subset S of V (G) is called the k-rainbow index of G, denoted by...

Graphs with 4-Rainbow Index 3 and n − 1

Xueliang LiIngo SchiermeyerKang YangYan Zhao — 2015

Discussiones Mathematicae Graph Theory

Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ ℕ, where adjacent edges may be colored the same. A tree T in G is called a rainbow tree if no two edges of T receive the same color. For a vertex set S ⊆ V (G), a tree that connects S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for every set S of k vertices of V (G) is called the k-rainbow index of G, denoted by rxk(G)....

The 3-Rainbow Index of a Graph

Lily ChenXueliang LiKang YangYan Zhao — 2015

Discussiones Mathematicae Graph Theory

Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ ℕ, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex subset S ⊆ V (G), a tree that connects S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for each k-subset S of V (G) is called the k-rainbow index of G, denoted by rxk(G). In this paper,...

Some congruences for 3-component multipartitions

Tao Yan ZhaoLily J. JinC. Gu — 2016

Open Mathematics

Let p3(n) denote the number of 3-component multipartitions of n. Recently, using a 3-dissection formula for the generating function of p3(n), Baruah and Ojah proved that for n ≥ 0, p3(9n + 5) ≡ 0 (mod 33) and p3 (9n + 8) ≡ 0 (mod 34). In this paper, we prove several congruences modulo powers of 3 for p3(n) by using some theta function identities. For example, we prove that for n ≥ 0, p3 (243n + 233) ≡ p3 (729n + 638) ≡ 0 (mod 310).

Page 1

Download Results (CSV)