Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Ricci solitons on almost Kenmotsu 3-manifolds

Yaning Wang — 2017

Open Mathematics

Let (M3, g) be an almost Kenmotsu 3-manifold such that the Reeb vector field is an eigenvector field of the Ricci operator. In this paper, we prove that if g represents a Ricci soliton whose potential vector field is orthogonal to the Reeb vector field, then M3 is locally isometric to either the hyperbolic space ℍ3(−1) or a non-unimodular Lie group equipped with a left invariant non-Kenmotsu almost Kenmotsu structure. In particular, when g represents a gradient Ricci soliton whose potential vector...

A class of 3-dimensional almost Kenmotsu manifolds with harmonic curvature tensors

Yaning Wang — 2016

Open Mathematics

Let M3 be a three-dimensional almost Kenmotsu manifold satisfying ▽ξh = 0. In this paper, we prove that the curvature tensor of M3 is harmonic if and only if M3 is locally isometric to either the hyperbolic space ℍ3(-1) or the Riemannian product ℍ2(−4) × ℝ. This generalizes a recent result obtained by [Wang Y., Three-dimensional locally symmetric almost Kenmotsu manifolds, Ann. Polon. Math., 2016, 116, 79-86] and [Cho J.T., Local symmetry on almost Kenmotsu three-manifolds, Hokkaido Math. J., 2016,...

Minimal Reeb vector fields on almost Kenmotsu manifolds

Yaning Wang — 2017

Czechoslovak Mathematical Journal

A necessary and sufficient condition for the Reeb vector field of a three dimensional non-Kenmotsu almost Kenmotsu manifold to be minimal is obtained. Using this result, we obtain some classifications of some types of ( k , μ , ν ) -almost Kenmotsu manifolds. Also, we give some characterizations of the minimality of the Reeb vector fields of ( k , μ , ν ) -almost Kenmotsu manifolds. In addition, we prove that the Reeb vector field of an almost Kenmotsu manifold with conformal Reeb foliation is minimal.

Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions

Yaning WangXimin Liu — 2014

Annales Polonici Mathematici

We consider an almost Kenmotsu manifold M 2 n + 1 with the characteristic vector field ξ belonging to the (k,μ)’-nullity distribution and h’ ≠ 0 and we prove that M 2 n + 1 is locally isometric to the Riemannian product of an (n+1)-dimensional manifold of constant sectional curvature -4 and a flat n-dimensional manifold, provided that M 2 n + 1 is ξ-Riemannian-semisymmetric. Moreover, if M 2 n + 1 is a ξ-Riemannian-semisymmetric almost Kenmotsu manifold such that ξ belongs to the (k,μ)-nullity distribution, we prove that M 2 n + 1 is...

Page 1

Download Results (CSV)