Minimal Reeb vector fields on almost Kenmotsu manifolds
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 1, page 73-86
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWang, Yaning. "Minimal Reeb vector fields on almost Kenmotsu manifolds." Czechoslovak Mathematical Journal 67.1 (2017): 73-86. <http://eudml.org/doc/287891>.
@article{Wang2017,
abstract = {A necessary and sufficient condition for the Reeb vector field of a three dimensional non-Kenmotsu almost Kenmotsu manifold to be minimal is obtained. Using this result, we obtain some classifications of some types of $(k,\mu ,\nu )$-almost Kenmotsu manifolds. Also, we give some characterizations of the minimality of the Reeb vector fields of $(k,\mu ,\nu )$-almost Kenmotsu manifolds. In addition, we prove that the Reeb vector field of an almost Kenmotsu manifold with conformal Reeb foliation is minimal.},
author = {Wang, Yaning},
journal = {Czechoslovak Mathematical Journal},
keywords = {almost Kenmotsu manifold; Reeb vector field; minimal vector field; harmonic vector field; Lie group},
language = {eng},
number = {1},
pages = {73-86},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Minimal Reeb vector fields on almost Kenmotsu manifolds},
url = {http://eudml.org/doc/287891},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Wang, Yaning
TI - Minimal Reeb vector fields on almost Kenmotsu manifolds
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 73
EP - 86
AB - A necessary and sufficient condition for the Reeb vector field of a three dimensional non-Kenmotsu almost Kenmotsu manifold to be minimal is obtained. Using this result, we obtain some classifications of some types of $(k,\mu ,\nu )$-almost Kenmotsu manifolds. Also, we give some characterizations of the minimality of the Reeb vector fields of $(k,\mu ,\nu )$-almost Kenmotsu manifolds. In addition, we prove that the Reeb vector field of an almost Kenmotsu manifold with conformal Reeb foliation is minimal.
LA - eng
KW - almost Kenmotsu manifold; Reeb vector field; minimal vector field; harmonic vector field; Lie group
UR - http://eudml.org/doc/287891
ER -
References
top- Blair, D. E., 10.1007/978-0-8176-4959-3, Progress in Mathematics 203, Birkhäuser, Boston (2010). (2010) Zbl1246.53001MR2682326DOI10.1007/978-0-8176-4959-3
- Boeckx, E., Vanhecke, L., 10.1016/S0926-2245(00)00021-8, Differ. Geom. Appl. 13 (2000), 77-93. (2000) Zbl0973.53053MR1775222DOI10.1016/S0926-2245(00)00021-8
- Cho, J. T., Kimura, M., 10.1016/j.difgeo.2014.05.002, Differ. Geom. Appl. 35 (2014), 266-273. (2014) Zbl1319.53094MR3254308DOI10.1016/j.difgeo.2014.05.002
- Dileo, G., Pastore, A. M., 10.36045/bbms/1179839227, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 343-354. (2007) Zbl1148.53034MR2341570DOI10.36045/bbms/1179839227
- Dileo, G., Pastore, A. M., 10.1007/s00022-009-1974-2, J. Geom. 93 (2009), 46-61. (2009) Zbl1204.53025MR2501208DOI10.1007/s00022-009-1974-2
- Dileo, G., Pastore, A. M., 10.1016/j.difgeo.2009.03.007, Differ. Geom. Appl. 27 (2009), 671-679. (2009) Zbl1183.53024MR2567845DOI10.1016/j.difgeo.2009.03.007
- Gil-Medrano, O., 10.1016/S0926-2245(01)00053-5, Differ. Geom. Appl. 15 (2001), 137-152. (2001) Zbl1066.53068MR1857559DOI10.1016/S0926-2245(01)00053-5
- Gil-Medrano, O., Llinares-Fuster, E., 10.2748/tmj/1113247180, Tohoku Math. J., II. 54 (2002), 71-84. (2002) Zbl1006.53053MR1878928DOI10.2748/tmj/1113247180
- Gluck, H., Ziller, W., 10.1007/BF02621910, Comment. Math. Helv. 61 (1986), 177-192. (1986) Zbl0605.53022MR0856085DOI10.1007/BF02621910
- González-Dávila, J. C., Vanhecke, L., 10.1023/A:1006788819180, Ann. Global Anal. Geom. 18 (2000), 385-404. (2000) Zbl1005.53026MR1795104DOI10.1023/A:1006788819180
- González-Dávila, J. C., Vanhecke, L., 10.1007/s00022-001-8570-4, J. Geom. 72 (2001), 65-76. (2001) Zbl1005.53039MR1891456DOI10.1007/s00022-001-8570-4
- González-Dávila, J. C., Vanhecke, L., Invariant harmonic unit vector fields on Lie groups, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5 (2002), 377-403. (2002) Zbl1097.53033MR1911197
- Janssens, D., Vanhecke, L., 10.2996/kmj/1138036310, Kodai Math. J. 4 (1981), 1-27. (1981) Zbl0472.53043MR0615665DOI10.2996/kmj/1138036310
- Kenmotsu, K., 10.2748/tmj/1178241594, Tohoku Math. J., II. Ser. 24 (1972), 93-103. (1972) Zbl0245.53040MR0319102DOI10.2748/tmj/1178241594
- Koufogiorgos, T., Markellos, M., Papantoniou, V. J., 10.2140/pjm.2008.234.325, Pac. J. Math. 234 (2008), 325-344. (2008) Zbl1154.53052MR2373452DOI10.2140/pjm.2008.234.325
- Milnor, J. W., 10.1016/S0001-8708(76)80002-3, Adv. Math. 21 (1976), 293-329. (1976) Zbl0341.53030MR0425012DOI10.1016/S0001-8708(76)80002-3
- Olszak, Z., 10.4064/cm-57-1-73-87, Colloq. Math. 57 (1989), 73-87. (1989) Zbl0702.53025MR1028604DOI10.4064/cm-57-1-73-87
- Pastore, A. M., Saltarelli, V., 10.36045/bbms/1320763128, Bull. Belg. Math. Soc. Simon Stevin 18 (2011), 655-666. (2011) Zbl1237.53031MR2907610DOI10.36045/bbms/1320763128
- Pastore, A. M., Saltarelli, V., Generalized nullity distributions on almost Kenmotsu manifolds, Int. Electron. J. Geom. 4 (2011), 168-183. (2011) Zbl1308.53118MR2929587
- Perrone, D., 10.1017/S0004972700033773, Bull. Aust. Math. Soc. 67 (2003), 305-315. (2003) Zbl1034.53050MR1972720DOI10.1017/S0004972700033773
- Perrone, D., 10.1007/s10474-012-0228-1, Acta Math. Hung. 138 (2013), 102-126. (2013) Zbl1299.53132MR3015965DOI10.1007/s10474-012-0228-1
- Perrone, D., 10.2996/kmj/1372337517, Kodai Math. J. 36 (2013), 258-274. (2013) Zbl1277.53083MR3081246DOI10.2996/kmj/1372337517
- Saltarelli, V., 10.1007/s40840-014-0029-5, Bull. Malays. Math. Sci. Soc. 38 (2015), 437-459. (2015) Zbl1317.53044MR3323720DOI10.1007/s40840-014-0029-5
- Vergara-Diaz, E., Wood, C. M., 10.1007/s10711-006-9112-x, Geom. Dedicata 123 (2006), 131-151. (2006) Zbl1118.53043MR2299730DOI10.1007/s10711-006-9112-x
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.