The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

The Vertex-Rainbow Index of A Graph

Yaping Mao — 2016

Discussiones Mathematicae Graph Theory

The k-rainbow index rxk(G) of a connected graph G was introduced by Chartrand, Okamoto and Zhang in 2010. As a natural counterpart of the k-rainbow index, we introduce the concept of k-vertex-rainbow index rvxk(G) in this paper. In this paper, sharp upper and lower bounds of rvxk(G) are given for a connected graph G of order n, that is, 0 ≤ rvxk(G) ≤ n − 2. We obtain Nordhaus-Gaddum results for 3-vertex-rainbow index of a graph G of order n, and show that rvx3(G) + rvx3(Ḡ) = 4 for n = 4 and 2 ≤...

Graphs with Large Generalized (Edge-)Connectivity

Xueliang LiYaping Mao — 2016

Discussiones Mathematicae Graph Theory

The generalized k-connectivity κk(G) of a graph G, introduced by Hager in 1985, is a nice generalization of the classical connectivity. Recently, as a natural counterpart, we proposed the concept of generalized k-edge-connectivity λk(G). In this paper, graphs of order n such that [...] for even k are characterized.

Inverse Problem on the Steiner Wiener Index

Xueliang LiYaping MaoIvan Gutman — 2018

Discussiones Mathematicae Graph Theory

The Wiener index W(G) of a connected graph G, introduced by Wiener in 1947, is defined as W(G) =∑u,v∈V (G) dG(u, v), where dG(u, v) is the distance (the length a shortest path) between the vertices u and v in G. For S ⊆ V (G), the Steiner distance d(S) of the vertices of S, introduced by Chartrand et al. in 1989, is the minimum size of a connected subgraph of G whose vertex set contains S. The k-th Steiner Wiener index SWk(G) of G is defined as [...] SWk(G)=∑S⊆V(G)|S|=kd(S) S W k ( G ) = S V ( G ) | S | = k d ( S ) . We investigate the...

The Steiner Wiener Index of A Graph

Xueliang LiYaping MaoIvan Gutman — 2016

Discussiones Mathematicae Graph Theory

The Wiener index W(G) of a connected graph G, introduced by Wiener in 1947, is defined as W(G) = ∑u,v∈V(G) d(u, v) where dG(u, v) is the distance between vertices u and v of G. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph G of order at least 2 and S ⊆ V (G), the Steiner distance d(S) of the vertices of S is the minimum size of a connected subgraph whose vertex set is S. We now...

A lower bound for the 3-pendant tree-connectivity of lexicographic product graphs

Yaping MaoChristopher MelekianEddie Cheng — 2023

Czechoslovak Mathematical Journal

For a connected graph G = ( V , E ) and a set S V ( G ) with at least two vertices, an S -Steiner tree is a subgraph T = ( V ' , E ' ) of G that is a tree with S V ' . If the degree of each vertex of S in T is equal to 1, then T is called a pendant S -Steiner tree. Two S -Steiner trees are if they share no vertices other than S and have no edges in common. For S V ( G ) and | S | 2 , the pendant tree-connectivity τ G ( S ) is the maximum number of internally disjoint pendant S -Steiner trees in G , and for k 2 , the k -pendant tree-connectivity τ k ( G ) is the minimum value...

Generalized connectivity of some total graphs

Yinkui LiYaping MaoZhao WangZongtian Wei — 2021

Czechoslovak Mathematical Journal

We study the generalized k -connectivity κ k ( G ) as introduced by Hager in 1985, as well as the more recently introduced generalized k -edge-connectivity λ k ( G ) . We determine the exact value of κ k ( G ) and λ k ( G ) for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case k = 3 .

Page 1

Download Results (CSV)