The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We show that T is a surjective multiplicative (but not necessarily linear) isometry from the Smirnov class on the open unit disk, the ball, or the polydisk onto itself, if and only if there exists a holomorphic automorphism Φ such that T(f)=f ○ Φ for every class element f or T(f) = for every class element f, where the automorphism Φ is a unitary transformation in the case of the ball and Φ(z 1, ..., z n) = for |λ j| = 1, 1 ≤ j ≤ n, and (i 1; ..., i n)is some permutation of the integers from...
Linear isometries of N p(D) onto N p(D) are described, where N p(D), p > 1, is the set of all holomorphic functions f on the upper half plane D = {z ∈ ℂ: Im z > 0} such that supy>0 ∫ℝ lnp (1 + |(x + iy)|) dx < +∞. Our result is an improvement of the results by D.A. Efimov.
Download Results (CSV)