Homfly polynomials as vassiliev link invariants
We prove that the number of linearly independent Vassiliev invariants for an r-component link of order n, which derived from the HOMFLY polynomial, is greater than or equal to min{n,[(n+r-1)/2]}.
We prove that the number of linearly independent Vassiliev invariants for an r-component link of order n, which derived from the HOMFLY polynomial, is greater than or equal to min{n,[(n+r-1)/2]}.
Page 1