Boundedness of para-product operators on spaces of homogeneous type
We obtain the boundedness of Calderón-Zygmund singular integral operators of non-convolution type on Hardy spaces for , where is a space of homogeneous type in the sense of Coifman and Weiss (1971), and is the regularity exponent of the kernel of the singular integral operator . Our approach relies on the discrete Littlewood-Paley-Stein theory and discrete Calderón’s identity. The crucial feature of our proof is to avoid atomic decomposition and molecular theory in contrast to what was...