Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Indices of subfields of cyclotomic ℤₚ-extensions and higher degree Fermat quotients

Yoko InoueKaori Ota — 2015

Acta Arithmetica

We consider the indices of subfields of cyclotomic ℤₚ-extensions of number fields. For the nth layer Kₙ of the cyclotomic ℤₚ-extension of ℚ, we find that the prime factors of the index of Kₙ/ℚ are those primes less than the extension degree pⁿ which split completely in Kₙ. Namely, the prime factor q satisfies q p - 1 1 ( m o d p n + 1 ) , and this leads us to consider higher degree Fermat quotients. Indices of subfields of cyclotomic ℤₚ-extensions of a number field which is cyclic over ℚ with extension degree a prime different...

Page 1

Download Results (CSV)