The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 26

Showing per page

Order by Relevance | Title | Year of publication

On a conjecture of Sárközy and Szemerédi

Yong-Gao Chen — 2015

Acta Arithmetica

Two infinite sequences A and B of non-negative integers are called infinite additive complements if their sum contains all sufficiently large integers. In 1994, Sárközy and Szemerédi conjectured that there exist infinite additive complements A and B with lim sup A(x)B(x)/x ≤ 1 and A(x)B(x)-x = O(minA(x),B(x)), where A(x) and B(x) are the counting functions of A and B, respectively. We prove that, for infinite additive complements A and B, if lim sup A(x)B(x)/x ≤ 1, then, for any given M > 1,...

A basis of ℤₘ, II

Min TangYong-Gao Chen — 2007

Colloquium Mathematicae

Given a set A ⊂ ℕ let σ A ( n ) denote the number of ordered pairs (a,a’) ∈ A × A such that a + a’ = n. Erdős and Turán conjectured that for any asymptotic basis A of ℕ, σ A ( n ) is unbounded. We show that the analogue of the Erdős-Turán conjecture does not hold in the abelian group (ℤₘ,+), namely, for any natural number m, there exists a set A ⊆ ℤₘ such that A + A = ℤₘ and σ A ( n ̅ ) 5120 for all n̅ ∈ ℤₘ.

On the index of an odd perfect number

Feng-Juan ChenYong-Gao Chen — 2014

Colloquium Mathematicae

Suppose that N is an odd perfect number and q α is a prime power with q α | | N . Define the index m = σ ( N / q α ) / q α . We prove that m cannot take the form p 2 u , where u is a positive integer and 2u+1 is composite. We also prove that, if q is the Euler prime, then m cannot take any of the 30 forms q₁, q₁², q₁³, q₁⁴, q₁⁵, q₁⁶, q₁⁷, q₁⁸, q₁q₂, q₁²q₂, q₁³q₂, q₁⁴ q₂, q₁⁵q₂, q₁²q₂², q₁³q₂², q₁⁴q₂², q₁q₂q₃, q₁²q₂q₃, q₁³q₂q₃, q₁⁴q₂q₃, q₁²q₂²q₃, q₁²q₂²q₃², q₁q₂q₃q₄, q₁²q₂q₃q₄, q₁³q₂q₃q₄, q₁²q₂²q₃q₄, q₁q₂q₃q₄q₅, q₁²q₂q₃q₄q₅, q₁q₂q₃q₄q₅q₆,...

A basis of Zₘ

Min TangYong-Gao Chen — 2006

Colloquium Mathematicae

Let σ A ( n ) = | ( a , a ' ) A ² : a + a ' = n | , where n ∈ N and A is a subset of N. Erdős and Turán conjectured that for any basis A of order 2 of N, σ A ( n ) is unbounded. In 1990, Imre Z. Ruzsa constructed a basis A of order 2 of N for which σ A ( n ) is bounded in the square mean. In this paper, we show that there exists a positive integer m₀ such that, for any integer m ≥ m₀, we have a set A ⊂ Zₘ such that A + A = Zₘ and σ A ( n ̅ ) 768 for all n̅ ∈ Zₘ.

Page 1 Next

Download Results (CSV)