A complex square matrix A is called an orthogonal projector if A 2 = A = A*, where A* denotes the conjugate transpose of A. In this paper, we give a comprehensive investigation to matrix expressions consisting of orthogonal projectors and their properties through ranks of matrices. We first collect some well-known rank formulas for orthogonal projectors and their operations, and then establish various new rank formulas for matrix expressions composed by orthogonal projectors. As applications, we...
Matrix mathematics provides a powerful tool set for addressing statistical problems, in particular, the theory of matrix ranks and inertias has been developed as effective methodology of simplifying various complicated matrix expressions, and establishing equalities and inequalities occurred in statistical analysis. This paper describes how to establish exact formulas for calculating ranks and inertias of covariances of predictors and estimators of parameter spaces in general linear models (GLMs),...
Least-Squares Solution (LSS) of a linear matrix equation and Ordinary Least-Squares Estimator (OLSE) of unknown parameters in a general linear model are two standard algebraical methods in computational mathematics and regression analysis. Assume that a symmetric quadratic matrix-valued function Φ(Z) = Q − ZPZ0 is given, where Z is taken as the LSS of the linear matrix equation AZ = B. In this paper, we establish a group of formulas for calculating maximum and minimum ranks and inertias of Φ(Z)...
A general linear model can be given in certain multiple partitioned forms, and there exist submodels associated with the given full model. In this situation, we can make statistical inferences from the full model and submodels, respectively. It has been realized that there do exist links between inference results obtained from the full model and its submodels, and thus it would be of interest to establish certain links among estimators of parameter spaces under these models. In this approach the...
Download Results (CSV)