The extremal ranks of A 1 - B 1 X C 1 subject to a pair of matrix equations

Yongge Tian; Yonghui Liu

Rendiconti del Seminario Matematico della Università di Padova (2006)

  • Volume: 116, page 55-69
  • ISSN: 0041-8994

How to cite

top

Tian, Yongge, and Liu, Yonghui. "The extremal ranks of $A_1 - B_1 X C_1$ subject to a pair of matrix equations." Rendiconti del Seminario Matematico della Università di Padova 116 (2006): 55-69. <http://eudml.org/doc/108702>.

@article{Tian2006,
author = {Tian, Yongge, Liu, Yonghui},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {55-69},
publisher = {Seminario Matematico of the University of Padua},
title = {The extremal ranks of $A_1 - B_1 X C_1$ subject to a pair of matrix equations},
url = {http://eudml.org/doc/108702},
volume = {116},
year = {2006},
}

TY - JOUR
AU - Tian, Yongge
AU - Liu, Yonghui
TI - The extremal ranks of $A_1 - B_1 X C_1$ subject to a pair of matrix equations
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2006
PB - Seminario Matematico of the University of Padua
VL - 116
SP - 55
EP - 69
LA - eng
UR - http://eudml.org/doc/108702
ER -

References

top
  1. [1] N. COHEN - C.R. JOHNSON - L. RODMAN - H.J. WOERDEMAN, Ranks of completions of partial matrices, Oper. Theory: Adv. Appl. 40 (1989), pp. 165-185. Zbl0676.15001MR1038313
  2. [2] C. DAVIS, Completing a matrix so as to minimize the rank, Oper. Theory: Adv. Appl. 29 (1988), pp. 87-95. Zbl0646.15001MR945004
  3. [3] C.R. JOHNSON, Matrix completion problems: a survey, In Matrix Theory and Applications, Proc. Sympos. Appl. Math. AMS 40 (1990), pp. 171-197. Zbl0706.15024MR1059486
  4. [4] C.R. JOHNSON, G.T. WHITNEY, Minimum rank completions, Linear and Multilinear Algebra 28 (1991), pp. 271-273. Zbl0775.15001MR1088424
  5. [5] G. MARSAGLIA - G.P.H. STYAN, Equalities and inequalities for ranks of matrices, Linear and Multilinear Algebra 2 (1974), pp. 269-292. Zbl0297.15003MR384840
  6. [6] S.K. MITRA, A pair of simultaneous linear matrix equations A1XB1 = C1 and A2XB2 = C2 and a programming problem, Linear Algebra Appl. 131 (1990), pp. 107-123. Zbl0712.15010MR1057067
  7. [7] A.B. ÖÈZGÜLER - N. AKAR, A common solution to a pair of linear matrix equations over a principal ideal domain, Linear Algebra Appl. 144 (1991), pp. 85-99. Zbl0718.15006MR1081877
  8. [8] Y. TIAN, The solvability of two linear matrix equations, Linear and Multilinear Algebra 48 (2000), pp. 123-147. Zbl0970.15005MR1813440
  9. [9] Y. TIAN, Completing block matrices with maximal and minimal ranks, Linear Algebra Appl. 321 (2000), pp. 327-345. Zbl0984.15013MR1800003
  10. [10] Y. TIAN, The maximal and minimal ranks of some expressions of generalized inverses of matrices, Southeast Asian Bull. Math. 25 (2002), pp. 745-755. Zbl1007.15005MR1934671
  11. [11] Y. TIAN, Upper and lower bounds for ranks of matrix expressions using generalized inverses, Linear Algebra Appl. 355 (2002), pp. 187-214. Zbl1016.15003MR1930145
  12. [12] Y. TIAN - S. Cheng, The maximal and minimal ranks of A – BXC with applications, New York J. Math. 9 (2003), pp. 345-362. Zbl1036.15004MR2028174
  13. [13] H.J. WOERDEMAN, Minimal rank completions for block matrices, Linear Algebra Appl. 121 (1989), pp. 105-122. Zbl0681.15002MR1011731

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.