In this note, we give an easy and short proof for the theorem by Park and Kim stating that the hypercompetition numbers of hypergraphs with maximum degree at most two is at most two.
The competition graph of a doubly partial order is known to be an interval graph. The CCE graph and the niche graph of a doubly partial order are also known to be interval graphs if the graphs do not contain a cycle of length four and three as an induced subgraph, respectively. Phylogeny graphs are variant of competition graphs. The phylogeny graph P(D) of a digraph D is the (simple undirected) graph defined by V (P(D)) := V (D) and E(P(D)) := {xy | N+D (x) ∩ N+D(y) ¹ ⊘ } ⋃ {xy | (x,y) ∈ A(D)},...
The niche graph of a digraph D is the (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if N+D(x) ∩ N+D(y) ≠ ∅ or N−D(x) ∩ N−D(y) ≠ ∅, where N+D(x) (resp. N−D(x)) is the set of out-neighbors (resp. in-neighbors) of x in D. A digraph D = (V,A) is called a semiorder (or a unit interval order ) if there exist a real-valued function f : V → R on the set V and a positive real number δ ∈ R such that (x, y) ∈ A if and only if...
The notion of travel groupoids was introduced by L. Nebeský in 2006 in connection with a study on geodetic graphs. A travel groupoid is a pair of a set and a binary operation on satisfying two axioms. We can associate a graph with a travel groupoid. We say that a graph has a travel groupoid if the graph associated with the travel groupoid is equal to . Nebeský gave a characterization of finite graphs having a travel groupoid. In this paper, we study travel groupoids on infinite graphs....
Download Results (CSV)