The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider a mathematical model which describes the static frictional contact between a piezoelectric body and an insulator foundation. We use a nonlinear electroelastic constitutive law to model the piezoelectric material and the normal compliance condition associated to a version of Coulomb's friction law to model the contact. We derive a variational formulation for the model which is in the form of a coupled system involving the displacement and the electric potential fields. Then we provide...
In this work, we consider the quasistatic frictionless contact problem between a
viscoelastic piezoelectric body and a deformable obstacle. The linear electro-viscoelastic
constitutive law is employed to model the piezoelectric material and the normal compliance
condition is used to model the contact. The variational formulation is derived in a form
of a coupled system for the displacement and electric potential fields. An existence and
uniqueness result is recalled. Then, a fully discrete scheme...
Download Results (CSV)