Numerical analysis of a frictionless viscoelastic piezoelectric contact problem
Mikael Barboteu; Jose Ramon Fernández; Youssef Ouafik
ESAIM: Mathematical Modelling and Numerical Analysis (2008)
- Volume: 42, Issue: 4, page 667-682
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- P. Alart, M. Barboteu and F. Lebon, Solution of frictional contact problems by an EBE preconditioner. Comput. Mech.20 (1997) 370–378.
- F. Auricchio, P. Bisegna and C. Lovadina, Finite element approximation of piezoelectric plates. Internat. J. Numer. Methods Engrg.50 (2001) 1469–1499.
- M. Barboteu, J.R. Fernández and Y. Ouafik, Numerical analysis of two frictionless elastic-piezoelectric contact problems. J. Math. Anal. Appl.339 (2008) 905–917.
- R.C. Batra and J.S. Yang, Saint-Venant's principle in linear piezoelectricity. J. Elasticity38 (1995) 209–218.
- P. Bisegna, F. Lebon and F. Maceri, The unilateral frictional contact of a piezoelectric body with a rigid support, in Contact mechanics (Praia da Consolação, 2001), Solid Mech. Appl.103, Kluwer Acad. Publ., Dordrecht (2002) 347–354.
- P.G. Ciarlet, The finite element method for elliptic problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.L. Lions Eds., North Holland (1991) 17–352.
- G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics. Springer Verlag, Berlin (1976).
- J.R. Fernández, M. Sofonea and J.M. Viaño, A frictionless contact problem for elastic-viscoplastic materials with normal compliance: Numerical analysis and computational experiments. Numer. Math.90 (2002) 689–719.
- R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984).
- W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. American Mathematical Society-International Press (2002).
- W. Han, M. Shillor and M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage. J. Comput. Appl. Math.137 (2001) 377–398.
- S. Hüeber, A. Matei and B.I. Wohlmuth, A mixed variational formulation and an optimal a priori error estimate for a frictional contact problem in elasto-piezoelectricity. Bull. Math. Soc. Sci. Math. Roumanie48 (2005) 209–232.
- T. Ideka, Fundamentals of Piezoelectricity. Oxford University Press, Oxford (1990).
- A. Klarbring, A. Mikelić and M. Shillor, Frictional contact problems with normal compliance. Internat. J. Engrg. Sci.26 (1988) 811–832.
- F. Maceri and B. Bisegna, The unilateral frictionless contact of a piezoelectric body with a rigid support. Math. Comput. Modelling28 (1998) 19–28.
- J.A.C. Martins and J.T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Anal.11 (1987) 407–428.
- R.D. Mindlin, Polarisation gradient in elastic dielectrics. Internat. J. Solids Structures4 (1968) 637–663.
- R.D. Mindlin, Continuum and lattice theories of influence of electromechanical coupling on capacitance of thin dielectric films. Internat. J. Solids Structures5 (1969) 1197–1213.
- R.D. Mindlin, Elasticity, piezoelasticity and crystal lattice dynamics. J. Elasticity4 (1972) 217–280.
- A. Morro and B. Straughan, A uniqueness theorem in the dynamical theory of piezoelectricity. Math. Methods Appl. Sci.14 (1991) 295–299.
- Y. Ouafik, A piezoelectric body in frictional contact. Bull. Math. Soc. Sci. Math. Roumanie48 (2005) 233–242.
- M. Sofonea and E.-H. Essoufi, Quasistatic frictional contact of a viscoelastic piezoelectric body. Adv. Math. Sci. Appl.14 (2004) 25–40.
- M. Sofonea and E.-H. Essoufi, A piezoelectric contact problem with slip dependent coefficient of friction. Math. Model. Anal.9 (2004) 229–242.
- M. Sofonea and Y. Ouafik, A piezoelectric contact problem with normal compliance. Appl. Math.32 (2005) 425–442.
- R.A. Toupin, The elastic dielectrics. J. Rational Mech. Anal.5 (1956) 849–915.
- R.A. Toupin, Stress tensors in elastic dielectrics. Arch. Rational Mech. Anal.5 (1960) 440–452.
- R.A. Toupin, A dynamical theory of elastic dielectrics. Internat. J. Engrg. Sci.1 (1963) 101–126.
- N. Turbé and G.A. Maugin, On the linear piezoelectricity of composite materials. Math. Methods Appl. Sci.14 (1991) 403–412.
- P. Wriggers, Computational Contact Mechanics. Wiley-Verlag (2002).