Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Improved upper bounds for nearly antipodal chromatic number of paths

Yu-Fa ShenGuo-Ping ZhengWen-Jie HeK — 2007

Discussiones Mathematicae Graph Theory

For paths Pₙ, G. Chartrand, L. Nebeský and P. Zhang showed that a c ' ( P ) n - 2 2 + 2 for every positive integer n, where ac’(Pₙ) denotes the nearly antipodal chromatic number of Pₙ. In this paper we show that a c ' ( P ) n - 2 2 - n / 2 - 10 / n + 7 if n is even positive integer and n ≥ 10, and a c ' ( P ) n - 2 2 - ( n - 1 ) / 2 - 13 / n + 8 if n is odd positive integer and n ≥ 13. For all even positive integers n ≥ 10 and all odd positive integers n ≥ 13, these results improve the upper bounds for nearly antipodal chromatic number of Pₙ.

On choosability of complete multipartite graphs K 4 , 3 * t , 2 * ( k - 2 t - 2 ) , 1 * ( t + 1 )

Guo-Ping ZhengYu-Fa ShenZuo-Li ChenJin-Feng Lv — 2010

Discussiones Mathematicae Graph Theory

A graph G is said to be chromatic-choosable if ch(G) = χ(G). Ohba has conjectured that every graph G with 2χ(G)+1 or fewer vertices is chromatic-choosable. It is clear that Ohba’s conjecture is true if and only if it is true for complete multipartite graphs. In this paper we show that Ohba’s conjecture is true for complete multipartite graphs K 4 , 3 * t , 2 * ( k - 2 t - 2 ) , 1 * ( t + 1 ) for all integers t ≥ 1 and k ≥ 2t+2, that is, c h ( K 4 , 3 * t , 2 * ( k - 2 t - 2 ) , 1 * ( t + 1 ) ) = k , which extends the results c h ( K 4 , 3 , 2 * ( k - 4 ) , 1 * 2 ) = k given by Shen et al. (Discrete Math. 308 (2008) 136-143), and c h ( K 4 , 3 * 2 , 2 * ( k - 6 ) , 1 * 3 ) = k given by He...

Page 1

Download Results (CSV)