A reducibility problem for the classical residue formula
A general theory of summation of divergent series based on the Hardy-Kolmogorov axioms is developed. A class of functional series is investigated by means of ergodic theory. The results are formulated in terms of solvability of some cohomological equations, all solutions to which are nonmeasurable. In particular, this realizes a construction of a nonmeasurable function as first conjectured by Kolmogorov.
The polynomial functions on a projective space over a field = ℝ, ℂ or ℍ come from the corresponding sphere via the Hopf fibration. The main theorem states that every polynomial function ϕ(x) of degree d is a linear combination of “elementary” functions .
Page 1