Polynomial functions on the classical projective spaces
Yu. I. Lyubich; O. A. Shatalova
Studia Mathematica (2005)
- Volume: 170, Issue: 1, page 77-87
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topYu. I. Lyubich, and O. A. Shatalova. "Polynomial functions on the classical projective spaces." Studia Mathematica 170.1 (2005): 77-87. <http://eudml.org/doc/286691>.
@article{Yu2005,
abstract = {The polynomial functions on a projective space over a field = ℝ, ℂ or ℍ come from the corresponding sphere via the Hopf fibration. The main theorem states that every polynomial function ϕ(x) of degree d is a linear combination of “elementary” functions $|⟨x,·⟩|^\{d\}$.},
author = {Yu. I. Lyubich, O. A. Shatalova},
journal = {Studia Mathematica},
keywords = {projective space; polynomial functions; invariant forms},
language = {eng},
number = {1},
pages = {77-87},
title = {Polynomial functions on the classical projective spaces},
url = {http://eudml.org/doc/286691},
volume = {170},
year = {2005},
}
TY - JOUR
AU - Yu. I. Lyubich
AU - O. A. Shatalova
TI - Polynomial functions on the classical projective spaces
JO - Studia Mathematica
PY - 2005
VL - 170
IS - 1
SP - 77
EP - 87
AB - The polynomial functions on a projective space over a field = ℝ, ℂ or ℍ come from the corresponding sphere via the Hopf fibration. The main theorem states that every polynomial function ϕ(x) of degree d is a linear combination of “elementary” functions $|⟨x,·⟩|^{d}$.
LA - eng
KW - projective space; polynomial functions; invariant forms
UR - http://eudml.org/doc/286691
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.