The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Global and non-global existence of solutions to a nonlocal and degenerate quasilinear parabolic system

Yujuan Chen — 2010

Czechoslovak Mathematical Journal

The paper deals with positive solutions of a nonlocal and degenerate quasilinear parabolic system not in divergence form u t = v p Δ u + a Ω u d x , v t = u q Δ v + b Ω v d x with null Dirichlet boundary conditions. By using the standard approximation method, we first give a series of fine a priori estimates for the solution of the corresponding approximate problem. Then using the diagonal method, we get the local existence and the bounds of the solution ( u , v ) to this problem. Moreover, a necessary and sufficient condition for the non-global existence...

Blow-up results for some reaction-diffusion equations with time delay

Hongliang WangYujuan ChenHaihua Lu — 2012

Annales Polonici Mathematici

We discuss the effect of time delay on blow-up of solutions to initial-boundary value problems for nonlinear reaction-diffusion equations. Firstly, two examples are given, which indicate that the delay can both induce and prevent the blow-up of solutions. Then we show that adding a new term with delay may not change the blow-up character of solutions.

Boundary blow-up solutions for a cooperative system involving the p-Laplacian

Li ChenYujuan ChenDang Luo — 2013

Annales Polonici Mathematici

We study necessary and sufficient conditions for the existence of nonnegative boundary blow-up solutions to the cooperative system Δ p u = g ( u - α v ) , Δ p v = f ( v - β u ) in a smooth bounded domain of N , where Δ p is the p-Laplacian operator defined by Δ p u = d i v ( | u | p - 2 u ) with p > 1, f and g are nondecreasing, nonnegative C¹ functions, and α and β are two positive parameters. The asymptotic behavior of solutions near the boundary is obtained and we get a uniqueness result for p = 2.

Page 1

Download Results (CSV)