The paper deals with positive solutions of a nonlocal and degenerate quasilinear parabolic system not in divergence form
with null Dirichlet boundary conditions. By using the standard approximation method, we first give a series of fine a priori estimates for the solution of the corresponding approximate problem. Then using the diagonal method, we get the local existence and the bounds of the solution to this problem. Moreover, a necessary and sufficient condition for the non-global existence...
We discuss the effect of time delay on blow-up of solutions to initial-boundary value problems for nonlinear reaction-diffusion equations. Firstly, two examples are given, which indicate that the delay can both induce and prevent the blow-up of solutions. Then we show that adding a new term with delay may not change the blow-up character of solutions.
We study necessary and sufficient conditions for the existence of nonnegative boundary blow-up solutions to the cooperative system in a smooth bounded domain of , where is the p-Laplacian operator defined by with p > 1, f and g are nondecreasing, nonnegative C¹ functions, and α and β are two positive parameters. The asymptotic behavior of solutions near the boundary is obtained and we get a uniqueness result for p = 2.
Download Results (CSV)