Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Global and non-global existence of solutions to a nonlocal and degenerate quasilinear parabolic system

Yujuan Chen — 2010

Czechoslovak Mathematical Journal

The paper deals with positive solutions of a nonlocal and degenerate quasilinear parabolic system not in divergence form u t = v p Δ u + a Ω u d x , v t = u q Δ v + b Ω v d x with null Dirichlet boundary conditions. By using the standard approximation method, we first give a series of fine a priori estimates for the solution of the corresponding approximate problem. Then using the diagonal method, we get the local existence and the bounds of the solution ( u , v ) to this problem. Moreover, a necessary and sufficient condition for the non-global existence...

Blow-up results for some reaction-diffusion equations with time delay

Hongliang WangYujuan ChenHaihua Lu — 2012

Annales Polonici Mathematici

We discuss the effect of time delay on blow-up of solutions to initial-boundary value problems for nonlinear reaction-diffusion equations. Firstly, two examples are given, which indicate that the delay can both induce and prevent the blow-up of solutions. Then we show that adding a new term with delay may not change the blow-up character of solutions.

Boundary blow-up solutions for a cooperative system involving the p-Laplacian

Li ChenYujuan ChenDang Luo — 2013

Annales Polonici Mathematici

We study necessary and sufficient conditions for the existence of nonnegative boundary blow-up solutions to the cooperative system Δ p u = g ( u - α v ) , Δ p v = f ( v - β u ) in a smooth bounded domain of N , where Δ p is the p-Laplacian operator defined by Δ p u = d i v ( | u | p - 2 u ) with p > 1, f and g are nondecreasing, nonnegative C¹ functions, and α and β are two positive parameters. The asymptotic behavior of solutions near the boundary is obtained and we get a uniqueness result for p = 2.

Page 1

Download Results (CSV)