The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On multiset colorings of generalized corona graphs

Yun FengWensong Lin — 2016

Mathematica Bohemica

A vertex k -coloring of a graph G is a if M ( u ) M ( v ) for every edge u v E ( G ) , where M ( u ) and M ( v ) denote the multisets of colors of the neighbors of u and v , respectively. The minimum k for which G has a multiset k -coloring is the χ m ( G ) of G . For an integer 0 , the - of a graph G , cor ( G ) , is the graph obtained from G by adding, for each vertex v in G , new neighbors which are end-vertices. In this paper, the multiset chromatic numbers are determined for - of all complete graphs, the regular complete multipartite...

Page 1

Download Results (CSV)