The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This is a survey of the results on stable homotopy types of polyhedra of small dimensions, mainly obtained by H.-J. Baues and the author [3, 5, 6]. The proofs are based on the technique of matrix problems (bimodule categories).
We give a complete classification of stable vector bundles over a cuspidal cubic and calculate their cohomologies. The technique of matrix problems is used, similar to [2, 3].
We generalize the results of Kahn about a correspondence between Cohen-Macaulay modules and vector bundles to non-commutative surface singularities. As an application, we give examples of non-commutative surface singularities which are not Cohen-Macaulay finite, but are Cohen-Macaulay tame.
We consider the stable homotopy category S of polyhedra (finite cell complexes). We say that two polyhedra X,Y are in the same genus and write X ∼ Y if X p ≅ Y p for all prime p, where X p denotes the image of Xin the localized category S p. We prove that it is equivalent to the stable isomorphism X∨B 0 ≅Y∨B 0, where B 0 is the wedge of all spheres S n such that π nS(X) is infinite. We also prove that a stable isomorphism X ∨ X ≅ Y ∨ X implies a stable isomorphism X ≅ Y.
Let Λ be a finite dimensional algebra over an algebraically closed field k and Λ has tame representation type. In this paper, the structure of Hom-spaces of all pairs of indecomposable Λ-modules having dimension smaller than or equal to a fixed natural number is described, and their dimensions are calculated in terms of a finite number of finitely generated Λ-modules and generic Λ-modules. In particular, such spaces are essentially controlled by those of the corresponding generic modules.
Download Results (CSV)