Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Zrychlování konvergence lineárních iteračních procesů v Banachových prostorech

Zdislav Kovářík — 1966

Aplikace matematiky

The convergence of the sequence x n + 1 = A x n + b to ( l - A ) - 1 b (where x n , b are vectors in Banach space, A is a bounded linear operator with bounded ( l - A ) - 1 ) can be accelerated by constructing certain linear combinations of several ordinary successive approximations. A sufficient condition is that the spectrum of A decompose into a finite set and a subset of a sufficiently small neighborhood of zero (e. g., A is compact).

Řešení částečného problému vlastních čísel v Banachových prostorech vícestupňovou mocninnou metodou

Zdislav Kovářík — 1967

Aplikace matematiky

In this paper a natural generalization of the gradual power method, known in matrix algebra, is given. It is an iterative process whose result is a basis of an invariant subspace of a given bounded linear operator A , and a matrix operator induced on this subspace. This process is shown to be contractive in certain metric, and can be used e.g. for compact operators.

Page 1

Download Results (CSV)