Trapping regions and an ODE-type proof of the existence and uniqueness theorem for Navier-Stokes equations with periodic boundary conditions on the plane.
We study the enclosing problem for discrete and continuous dynamical systems in the context of computer assisted proofs. We review and compare the existing methods and emphasize the importance of developing a suitable set arithmetic for efficient algorithms solving the enclosing problem.
We show that all periods of periodic points forced by a pattern for interval maps are preserved for high-dimensional maps if the multidimensional perturbation is small. We also show that if an interval map has a fixed point associated with a homoclinic-like orbit then any small multidimensional perturbation has periodic points of all periods.
Page 1