The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Commutators of the fractional maximal function on variable exponent Lebesgue spaces

Pu ZhangJianglong Wu — 2014

Czechoslovak Mathematical Journal

Let M β be the fractional maximal function. The commutator generated by M β and a suitable function b is defined by [ M β , b ] f = M β ( b f ) - b M β ( f ) . Denote by 𝒫 ( n ) the set of all measurable functions p ( · ) : n [ 1 , ) such that 1 < p - : = ess inf x n p ( x ) and p + : = ess sup x n p ( x ) < , and by ( n ) the set of all p ( · ) 𝒫 ( n ) such that the Hardy-Littlewood maximal function M is bounded on L p ( · ) ( n ) . In this paper, the authors give some characterizations of b for which [ M β , b ] is bounded from L p ( · ) ( n ) into L q ( · ) ( n ) , when p ( · ) 𝒫 ( n ) , 0 < β < n / p + and 1 / q ( · ) = 1 / p ( · ) - β / n with q ( · ) ( n - β ) / n ( n ) .

Page 1

Download Results (CSV)