Some maximal elements' theorems in -spaces.
Let f ∈ ℚ [X] be a polynomial without multiple roots and with deg(f) ≥ 2. We give conditions for f(X) = AX² + BX + C such that the Diophantine equation f(x)f(y) = f(z)² has infinitely many nontrivial integer solutions and prove that this equation has a rational parametric solution for infinitely many irreducible cubic polynomials. Moreover, we consider f(x)f(y) = f(z)² for quartic polynomials.
We survey the recent investigations on approximate amenability/contractibility and pseudo-amenability/contractibility for Banach algebras. We will discuss the core problems concerning these notions and address the significance of any solutions to them to the development of the field. A few new results are also included.
We employ a natural method from the perspective of the optimal stopping theory to analyze entry-exit decisions with implementation delay of a project, and provide closed expressions for optimal entry decision times, optimal exit decision times, and the maximal expected present value of the project. The results in conventional research were obtained under the restriction that the sum of the entry cost and exit cost is nonnegative. In practice, we may meet cases when this sum is negative, so it is...
We consider a variety of Euler’s sum of powers conjecture, i.e., whether the Diophantine system has positive integer or rational solutions , , , , Using the theory of elliptic curves, we prove that it has no positive integer solution for , but there are infinitely many positive integers such that it has a positive integer solution for . As a corollary, for and any positive integer , the above Diophantine system has a positive rational solution. Meanwhile, we give conditions such that...
Page 1