The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For a finite group and a non-linear irreducible complex character of write . In this paper, we study the finite non-solvable groups such that consists of at most two conjugacy classes for all but one of the non-linear irreducible characters of . In particular, we characterize a class of finite solvable groups which are closely related to the above-mentioned question and are called solvable -groups. As a corollary, we answer Research Problem in [Y. Berkovich and L. Kazarin: Finite...
Download Results (CSV)