Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Strong ƒ-Star Factors of Graphs

Zheng Yan — 2015

Discussiones Mathematicae Graph Theory

Let G be a graph and f : V (G) → {2, 3, . . .}. A spanning subgraph F is called strong f-star of G if each component of F is a star whose center x satisfies degF (x) ≤ ƒ(x) and F is an induced subgraph of G. In this paper, we prove that G has a strong f-star factor if and only if oddca(G − S) ≤ ∑x∊S ƒ(x) for all S ⊂ V (G), where oddca(G) denotes the number of odd complete-cacti of G.

Spanning Trees whose Stems have a Bounded Number of Branch Vertices

Zheng Yan — 2016

Discussiones Mathematicae Graph Theory

Let T be a tree, a vertex of degree one and a vertex of degree at least three is called a leaf and a branch vertex, respectively. The set of leaves of T is denoted by Leaf(T). The subtree T − Leaf(T) of T is called the stem of T and denoted by Stem(T). In this paper, we give two sufficient conditions for a connected graph to have a spanning tree whose stem has a bounded number of branch vertices, and these conditions are best possible.

Star-Cycle Factors of Graphs

Yoshimi EgawaMikio KanoZheng Yan — 2014

Discussiones Mathematicae Graph Theory

A spanning subgraph F of a graph G is called a star-cycle factor of G if each component of F is a star or cycle. Let G be a graph and f : V (G) → {1, 2, 3, . . .} be a function. Let W = {v ∈ V (G) : f(v) = 1}. Under this notation, it was proved by Berge and Las Vergnas that G has a star-cycle factor F with the property that (i) if a component D of F is a star with center v, then degF (v) ≤ f(v), and (ii) if a component D of F is a cycle, then V (D) ⊆ W if and only if iso(G − S) ≤ Σx∈S f(x) for all...

Page 1

Download Results (CSV)