Global attractivity, oscillation and Hopf bifurcation for a class of diffusive hematopoiesis models
In this paper, we discuss the special diffusive hematopoiesis model with Neumann boundary condition. Sufficient conditions are provided for the global attractivity and oscillation of the equilibrium for Eq. (*), by using a new theorem we stated and proved. When P(t, χ) does not depend on a spatial variable χ ∈ Ω, these results are also true and extend or complement existing results. Finally, existence and stability of the Hopf bifurcation for Eq. (*) are studied.