Currently displaying 1 – 20 of 22

Showing per page

Order by Relevance | Title | Year of publication

Uniform Eberlein Compacta and Uniformly Gâteaux Smooth Norms

Fabian, MariánHájek, PetrZizler, Václav — 1997

Serdica Mathematical Journal

* Supported by grants: AV ĈR 101-95-02, GAĈR 201-94-0069 (Czech Republic) and NSERC 7926 (Canada). It is shown that the dual unit ball BX∗ of a Banach space X∗ in its weak star topology is a uniform Eberlein compact if and only if X admits a uniformly Gâteaux smooth norm and X is a subspace of a weakly compactly generated space. The bidual unit ball BX∗∗ of a Banach space X∗∗ in its weak star topology is a uniform Eberlein compact if and only if X admits a weakly uniformly rotund norm....

Functions locally dependent on finitely many coordinates.

Petr HájekVáclav Zizler — 2006

RACSAM

The notion of functions dependent locally on finitely many coordinates plays an important role in the theory of smoothness and renormings on Banach spaces, especially when higher smoothness (C) is involved. In this note we survey most of the main results in this area, and indicate many old as well as new open problems.

Smoothness in Banach spaces. Selected problems.

This is a short survey on some recent as well as classical results and open problems in smoothness and renormings of Banach spaces. Applications in general topology and nonlinear analysis are considered. A few new results and new proofs are included. An effort has been made that a young researcher may enjoy going through it without any special pre-requisites and get a feeling about this area of Banach space theory. Many open problems of different level of difficulty are discussed. For the reader...

Strong subdifferentiability of norms and geometry of Banach spaces

Gilles GodefroyVicente MontesinosVáclav Zizler — 1995

Commentationes Mathematicae Universitatis Carolinae

The strong subdifferentiability of norms (i.eȯne-sided differentiability uniform in directions) is studied in connection with some structural properties of Banach spaces. It is shown that every separable Banach space with nonseparable dual admits a norm that is nowhere strongly subdifferentiable except at the origin. On the other hand, every Banach space with a strongly subdifferentiable norm is Asplund.

Solving singular convolution equations using the inverse fast Fourier transform

Eduard KrajníkVincente MontesinosPeter ZizlerVáclav Zizler — 2012

Applications of Mathematics

The inverse Fast Fourier Transform is a common procedure to solve a convolution equation provided the transfer function has no zeros on the unit circle. In our paper we generalize this method to the case of a singular convolution equation and prove that if the transfer function is a trigonometric polynomial with simple zeros on the unit circle, then this method can be extended.

Page 1 Next

Download Results (CSV)