Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Recent developments in the theory of Borel reducibility

Greg HjorthAlexander S. Kechris — 2001

Fundamenta Mathematicae

Let E₀ be the Vitali equivalence relation and E₃ the product of countably many copies of E₀. Two new dichotomy theorems for Borel equivalence relations are proved. First, for any Borel equivalence relation E that is (Borel) reducible to E₃, either E is reducible to E₀ or else E₃ is reducible to E. Second, if E is a Borel equivalence relation induced by a Borel action of a closed subgroup of the infinite symmetric group that admits an invariant metric, then either E is reducible to a countable...

Dynamical properties of the automorphism groups of the random poset and random distributive lattice

Alexander S. KechrisMiodrag Sokić — 2012

Fundamenta Mathematicae

A method is developed for proving non-amenability of certain automorphism groups of countable structures and is used to show that the automorphism groups of the random poset and random distributive lattice are not amenable. The universal minimal flow of the automorphism group of the random distributive lattice is computed as a canonical space of linear orderings but it is also shown that the class of finite distributive lattices does not admit hereditary order expansions with the Amalgamation Property....

Random orderings and unique ergodicity of automorphism groups

Omer AngelAlexander S. KechrisRussell Lyons — 2014

Journal of the European Mathematical Society

We show that the only random orderings of finite graphs that are invariant under isomorphism and induced subgraph are the uniform random orderings. We show how this implies the unique ergodicity of the automorphism group of the random graph. We give similar theorems for other structures, including, for example, metric spaces. These give the first examples of uniquely ergodic groups, other than compact groups and extremely amenable groups, after Glasner andWeiss’s example of the group of all permutations...

Page 1

Download Results (CSV)