## Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

### Estimators of g-monotone dependence functions

Applicationes Mathematicae

The notion of g-monotone dependence function introduced in  generalizes the notions of the monotone dependence function and the quantile monotone dependence function defined in ,  and . In this paper we study the asymptotic behaviour of sample g-monotone dependence functions and their strong properties.

### On monotone dependence functions of the quantile type

Applicationes Mathematicae

We introduce the concept of monotone dependence function of bivariate distributions without moment conditions. Our concept gives, among other things, a characterization of independent and positively (negatively) quadrant dependent random variables.

### Necessary and sufficient conditions for weak convergence of random sums of independent random variables

Commentationes Mathematicae Universitatis Carolinae

Let $\left\{{X}_{n},\phantom{\rule{0.166667em}{0ex}}n\ge 1\right\}$ be a sequence of independent random variables such that $E{X}_{n}={a}_{n}$, $E{\left({X}_{n}-{a}_{n}\right)}^{2}={\sigma }_{n}^{2}$, $n\ge 1$. Let $\left\{{N}_{n},\phantom{\rule{0.166667em}{0ex}}n\ge 1\right\}$ be a sequence od positive integer-valued random variables. Let us put ${S}_{{N}_{n}}={\sum }_{k=1}^{{N}_{n}}{X}_{k}$, ${L}_{n}={\sum }_{k=1}^{n}{a}_{k}$, ${s}_{n}^{2}={\sum }_{k=1}^{n}{\sigma }_{k}^{2}$, $n\ge 1$. In this paper we present necessary and sufficient conditions for weak convergence of the sequence $\left\{\left({S}_{{N}_{n}}-{L}_{n}\right)/{s}_{n},\phantom{\rule{0.166667em}{0ex}}n\ge 1\right\}$, as $n\to \infty$. The obtained theorems extend the main result of M. Finkelstein and H.G. Tucker (1989).

Page 1