Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Problems and Theorems in the Theory of Multiplier Sequences

Craven, ThomasCsordas, George — 1996

Serdica Mathematical Journal

The purpose of this paper is (1) to highlight some recent and heretofore unpublished results in the theory of multiplier sequences and (2) to survey some open problems in this area of research. For the sake of clarity of exposition, we have grouped the problems in three subsections, although several of the problems are interrelated. For the reader’s convenience, we have included the pertinent definitions, cited references and related results, and in several instances, elucidated the problems by...

Weakly Increasing Zero-Diminishing Sequences

Bakan, AndrewCraven, ThomasCsordas, GeorgeGolub, Anatoly — 1996

Serdica Mathematical Journal

The following problem, suggested by Laguerre’s Theorem (1884), remains open: Characterize all real sequences {μk} k=0...∞ which have the zero-diminishing property; that is, if k=0...n, p(x) = ∑(ak x^k) is any P real polynomial, then k=0...n, p(x) = ∑(μk ak x^k) has no more real zeros than p(x). In this paper this problem is solved under the additional assumption of a weak growth condition on the sequence {μk} k=0...∞, namely lim n→∞ | μn |^(1/n) < ∞. More precisely, it is established that...

The generalized Laguerre inequalities and functions in the Laguerre-Pólya class

George CsordasAnna Vishnyakova — 2013

Open Mathematics

The principal goal of this paper is to show that the various sufficient conditions for a real entire function, φ(x), to belong to the Laguerre-Pólya class (Definition 1.1), expressed in terms of Laguerre-type inequalities, do not require the a priori assumptions about the order and type of φ(x). The proof of the main theorem (Theorem 2.3) involving the generalized real Laguerre inequalities, is based on a beautiful geometric result, the Borel-Carathédodory Inequality (Theorem 2.1), and on a deep...

Page 1

Download Results (CSV)