### Counting problems and semisimple groups.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Back to Simple Search
# Advanced Search

A holomorphic 1-form on a compact Riemann surface S naturally defines a flat metric on S with cone-type singularities. We present the following surprising phenomenon: having found a geodesic segment (saddle connection) joining a pair of conical points one can find with a nonzero probability another saddle connection on S having the same direction and the same length as the initial one. A similar phenomenon is valid for the families of parallel closed geodesics. We give a complete description of...

We provide partial results towards a conjectural generalization of a theorem of Lubotzky-Mozes-Raghunathan for arithmetic groups (over number fields or function fields) that implies, in low dimensions, both polynomial isoperimetric inequalities and finiteness properties. As a tool in our proof, we establish polynomial isoperimetric inequalities and finiteness properties for certain solvable groups that appear as subgroups of parabolic groups in semisimple groups, thus generalizing a theorem of Bux....

**Page 1**