Logarithmic coefficients of univalent functions.
A well known result of Beurling asserts that if f is a function which is analytic in the unit disc and if either f is univalent or f has a finite Dirichlet integral then the set of points for which the radial variation is infinite is a set of logarithmic capacity zero. In this paper we prove that this result is sharp in a very strong sense. Also, we prove that if f is as above then the set of points such that as r → 1 is a set of logarithmic capacity zero. In particular, our results give...
Kennedy obtained sharp estimates of the growth of the Nevanlinna characteristic of the derivative of a function f analytic and with bounded characteristic in the unit disc. Actually, Kennedy's results are sharp even for VMOA functions. It is well known that any BMOA function is a Bloch function and any VMOA function belongs to the little Bloch space. In this paper we study the possibility of extending Kennedy's results to certain classes of Bloch functions. Also, we prove some more general results...
Page 1